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The Lyapunov-Malkin theorem on stability and (simultaneously) exponential asymptotic stability with respect to part of the 
variables in the linear approximation in critical cases (in Lyapunov's sense) has served as a point of departure for various previous 
results. These results are strengthened by relaxing all additional assumptions (other than continuity) regarding the coefficients 
of the linear part of the non-linear system under consideration. The result is extended to the problem of polystability with respect 
to part of the variables. In addition, a method for narrowing down the admissible domain of variation of "uncontrollable" variables 
is worked out as applied to problems of asymptotic stability with respect to part of the variables. Examples are considered. 
© 2000 Elsevier Science Ltd. All rights reserved. 

To date, a large number of investigations have been devoted to the problem of stability with respect 
not to all variables characterizing the state of a system but only to a certain given part of those variables 
[1, 2]. The problem is often also referred to as that of partial stability. Some idea of the present state 
in this area may be obtained, for example, from [3-8], which also provide an extensive bibliography. 

The problem of partial stability is closely connected with two intensively investigated stability problems: 
stability with respect to two measures [9-11] and with respect to given state functions [1, 12]. In addition, 
in the last decade problems ofpolystability (polystability with respect to part of the variables) have been 
singled out and the first studies have been published [13, 14]; in this context different groups of phase 
variables (or of part of the phase variables) possess different types of stability. 

In what follows, the following problems will be considered in the context of the general problem of 
partial stability. 

1. The problem of exponential asymptotic y-stability and (simultaneously) uniform stability, in Lyapunov's 
sense, of the unperturbed motion x = (yT, zT)T = 0 of a non-linear non-autonomous system of ordinary 
differential equations of perturbed motion 

~k = X ( t , x ) ,  X ( t , 0 )  = 0 (0 .1 )  

n + l  n under fairly general assumptions concerning the vector function X: R ---> R . In this connection, stronger 
versions will be established for several known results [3, 6, 8, 15, 16] based on the Lyapunov-Malkin 
theorem [1, 17] on stability in the linear approximation in critical cases in Lyapunov's sense. (As regards 
the vector notation used in system (0.1) and in other systems of differential equations to be considered 
later, we shall assume throughout that x, y, z are column vectors of appropriate dimensions; a superscript 
T will denote transposition.) 

Together with the above problem, which may be treated as the problem of polystability of the 
unperturbed motion x = 0 of system (0.1), we will also consider the more general problem of polystability 
with respect to part of the variables. 

2. The problem of asymptotic y-stability of the unperturbed motion of system (0.1) without the additional 
assumption that the motion is stable in Lyapunov's sense. A method proposed in [18] for narrowing down 
the domain in which the "uncontrollable" variables are allowed to vary is developed to study problems 
of asymptotic stability with respect to part of the variables. Previous results [3, 19, 20], going back to a 
theorem of Marachkov [21], are modified in this direction. 

1. G E N E R A L I Z A T I O N  OF T H E  L Y A P U N O V - M A L K I N  T H E O R E M  

Stipulating, in keeping with the special features of partial stability problems, that the phase vector 
of the system is divided into two parts, we present system (0.1) as two groups of equations 
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j, = A(t)y + B(t)z + Y(t, y, z), ~. = C(t)y + D(t)z + Z(t, y, z) (1.1) 

whereA,  B, C and D are matr ix functions of  t of  appropr ia te  dimensions, whose e lements  are functions 
continuous in t ~ [0, +oo). The  non-linear perturbations Y and Z are continuous and satisfy the conditions 
of  the existence and uniqueness  theorems in the domain  t t> 0, Ilxll -< h = const  > 0. 

Le t  x(t; to, x0) be a solution of  system (1.1) satisfying the initial condit ion x0 = x(t0; to, x0). The  concept  
of  polystability may  be def ined rigorously as follows. 

Definition 1 [3, 22]. The  unper tu rbed  mot ion  y = 0, z = 0 of  system (1.1) is uniformly stable 
in Lyapunov's sense and (simultaneously) exponentially asymptotically y-stable if, for  any e > 0, t o/> 0, 
numbers  8(e) > 0 and 7 > 0 exist such that, whenever  Ilx01l < 6, the following inequalit ies hold for all 
t>~to 

Jl,,o, t0,x0 l < Ily<t;,0, xdl < Eexp[ -~ , ( t - to )  ] 

We assume that  the following condit ions are satisfied [3] 

Y(t ,0 ,0)  -= Y(t ,0,z)  = 0, Z(t ,0,0)  -= Z(t ,0,z)  = 0 

[[Y(t, Y, z)[I + Ilz(t,y, z)ll 
II y II 

---~0 as Ilyll+llzll--->0 

Theorem 1. Le t  the trivial solution of  the l inear system 

(1.2) 

= A(t)y + B(t)z, ~. = C(t)y + D(t)z (1.3) 

be uniformly stable in Lyapunov's sense and (simultaneously) exponentially asymptotically y-stable. Then,  
if condit ions (1.2) are satisfied, the unper tu rbed  solution y = 0, z = 0 of  the non-l inear  system (1.1) 
has the same stability property.  

Proof. By the assumptions of  the theorem,  a Lyapunov V-function for the l inear system (1.3) exists 
which satisfies the following condit ions for all t />  0, Ilxll < oo [22] 

II y II<-V(t,x)<-M II x II, Vo.3)(t,x)~-o~V(t,x ) (1.4) 

I V(t, x ' )  - V(t, x')  I~ < M II x"  - x '  II (¢x, M = const > 0) (1.5) 

The  derivative of  this V-function along trajectories of  the non-l inear  system (1.1) may be represented  
as follows: 

~j.o(t,x)~-txV(t,x)+ R(t,x), R=I~xx X* (t,x)), X* = ( Y r , z r ) r  

where  ( • ) denotes  the scalar product .  
By condit ions (1.2) and (1.5), in the domain t I> 0, IIxll ~< h we have an est imate IR(t, x)l ~< e314]ly[I 

which, in view of  the first inequality in (1.4), can be writ ten in the form 

I R(t, x) I~eMV(e = const ~ 0 as II x I1-+ 0) 

Hence  a number  13 (0 < 13 < h) exists such that  in the domain  t />  0, Ilxll ~< 13 

VO.o(t,x)~-tziV(t,x) (ix I = const > 0) (1.6) 

Consider  an arbi t rary solution x(t; to, Xo) of  system (1.1) with initial data in the domain  

t0~>0, II x 0 I1~<15 (0  < ~i = c o n s t  < 13) (1 .7 )  

This solut ion satisfies the condi t ion 

it x(t; t o , x o ) ,~< p (1.8)  
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at least in some interval T = (to, t*). There fore ,  by inequality (1.6) and the first group of  inequalit ies 
(1.4), for  t • T, we have 

II y(t ; t  o, Xo)II~V(t,x(t;to,Xo))~.M II x 0 II e x p [ - a  I (t - t o )] (1.9) 

Condit ions (1.2) and inequali ty (1.9) enable us to derive the est imate 

II X(t, x(t; t o, x 0 )) II~<a 2 II x 0 II e x p [ - a  t (t - t o )] (1.10) 

t • T, (z 2 = const ---> 0 as II x II---> 0 

Using Cauchy's  formula,  we can express the solution x(t; to, x0) of  the non-l inear  system (1.1) as 

t 

x(t; to, x 0) = K(t, t o)x o + ~ K(t, x)X(x, x(x; t o, x 0))d'c (1.11) 
to 

where  K(t, to) = U(t)Uq(to) is the Cauchy matrix and U(t) is a fundamenta l  matrix of  solutions of  l inear 
system (1.3). 

Since the trivial solut ion of  l inear system (1.3) is uniformly stable in Lyapunov's  sense, a number  
N = const > 0 exists such that  IK(t, t0)l ~< N for  t >/to, to t> 0. It therefore  follows f rom (1.11), on the 
basis of  est imate (1.10), that  

II x(t; t o, x 0) I~  N(1 + (Zll(Z2) II x o II (1.12) 

Le t  e be an arbitrarily small number ,  0 < e < 13. 
Choose  8(e) > 0 so small that  8 < min {M -1, [N(1 + ai-la2)]-l}e. Then  it follows from (1.9) and (1.12) 
that  for  t • T 

I1 y(t ; t  0, Xo) I1< e e x p [ - a  I (t - to)], II x(t;t  o, x0) I1< e (1.13) 

Thus, inequalit ies ( 1 . 13 )ho ld  th roughout  the t ime interval in which condit ion (1.8) holds. Since 
e < ~, it follows that  inequali t ies (1.13) hold for  all t > t 0. Consequently,  the unper tu rbed  solution 
y = 0, z = 0 of  non-l inear  system (1.1) is uniformly stable in Lyapunov's  sense and (simultaneously) 
exponential ly asymptotically y-stable. 

Discussion of Theorem 1.1. Theorem I extends certain results of [3, 6, 8, 15-17]. In [6, 8, 15, 17] the matrix functions 
A, B, C and D are independent of t; also in [17] additionally B -= 0, D ~ 0 (all elements of the matrices B and D 
vanish identically), while in [15] B --- 0. In [3, 16] the matrix functions A, C and D depend on t, but B ~- 0 and, in 
addition, all elements of the matrix functionsA and C are bounded for t e [0, +oo). 

2. Confining themselves to the case B -= 0, Rumyantsev and Oziraner [3, 16] considered the more general class 
of Z-non-linearities, while in [6, 8] the more general class of Y-non-linearities is considered. In [6, 8], however, 
the matrix functionsA, C and D do not depend on t. 

3. The statement of the theorem is no longer true if the Lyapunov-stability of the trivial solution of linear system (1.3) 
is not uniform. This is demonstrated by an example due to Perron [17, 23], constructed for the case B -~ 0, C =- 0. 

Condit ions (1.2) imposed on Y and Z may be somewhat  weakened.  

Corollary. T h e o r e m  1 also holds if there  are in system (1.1) addit ional  non-l inear  terms yO and Z ° 
for  which, in the domain  t ~ 0, Ilxll ~ h, the condit ion IY°(t, x)l + IZ (t, x)l --~ TV holds, where  V is 
a Lyapunov function for linear system (1.3) which satisfies conditions (1.4) and (1.5), and y is a sufficiently 
small positive constant .  

Proof. The  first par t  of  the proof,  including est imate (1.10), is as before.  We fur ther  represen t  the 
solution x(t; to, x0) of  the non-l inear  system in terms of  Cauchy's formula.  Using est imates (1.9), (1.10) 
and the inequali ty V(t, x) ~< Mllxll, we have 

t 

II x(t ; t  0 , x0) Ik< N[(I + a2a~' ) II x 0 II +yM ~11 xo(x;t  o, Xo) II dx] 
t0  

Applying the Gronwal l -Be l lman  lemma [3] to this inequality, we obtain 

II x ( t ; to ,X o) Ik<N(1 + o~2a~ I ) II x o II exp(yM)  
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The  p roo f  is now comple ted  in the same way as that of  T h e o r e m  1. 

Remarks.  1. Previously [3, 16], it was assumed that B =- 0, Y°(t, x) =- 0, but the conditions considered for Z ° were 
more general. 

2. If the coefficients of the matrix functions A, B and C, D are periodic functions, analytic for t ~ [0, +oo), then 
Theorem 1 can be proved along lines similar to those of [6, 8]. At the same time, one can also slightly weaken the 
conditions imposed on the non-linear perturbations Y and Z. However, the scheme of [6, 8] does not carry over 
to the general case, in which A, B, C and D depend on t. 

Example  1. The equations of angular motion of a rigid body about its centre of mass under the action of linear 
torques are 

~t= L(t)x+X*(x), x =(yl ,Y2,Zl)  T 

X* = [(J2 - J3)J/lY2zl , (J3 - JI)J21YlZi , ( JI - J2 )J~YlY2 ]r (1.14) 

where Yl, Y2, Zl are the projections of the angular velocity vector x of the body onto the principal central axes 
of inertia, Ji are the principal central moments of inertia, and L is a 3 x 3 matrix whose elements are functions of 
t e [0, +~)  characterizing the action of linear torques of dissipative and accelerating forces on the body. 

Suppose the trivial solution x = 0:1, Y2, Zl) r = 0 of the linear system 

x= L(t)x (1.15) 

is uniformly stable in Lyapunov's sense and (simultaneously) exponentially asymptotically 0:1, Y2) -stable. The 
structure of the non-linear terms in system (1.14) is such that they satisfy conditions (1.2). Therefore, we conclude 
from Theorem I that the aforementioned stability property for linear system (1.15) also holds for the equilibrium 
position x = (vl,Y2, 21) T = 0 of non-linear system (1.14). 

Note that system (1.14) does not satisfy all the conditions of the Lyapunov-Maikin Theorem as stipulated in 
[3, 6, 8, 15-17]. 

Example  2. Under fairly general assumptions, the motion of a holonomic mechanical system subject to linear 
and also non-linear forces of a general nature is described by a system of differential equations 

i = Q(t)x + P( t ) i  + X*(t,x,x), x = (yr,zr)r (1.16) 

Let us assume that the matrix functions Q and P are continuous for t e [0, + ~), and the non-linear vector function 
X* is continuous in the domain t/> 0; Ilxll + 11511 = h; in addition, system (1.16) satisfies the assumptions of the 
existence and uniqueness theorems. 

Suppose the equilibrium position x = x = 0 of the linear system 

~k = Q(t)x + P(t)x (1.17) 

is uniformly stable in Lyapunov's sense and (simultaneously) exponentially asymptotically (y, y)-stable. Suppose, 
moreover, that the structure of the non-linear forces X* is such that they satisfy the conditions 

X*(t,O,O)~O, X*(t,x,~k)--O for y = y = O  

IIX*(t,x,x)ll[llyll+ll~'ll] -~ --+0 as Ilxll+ll~kll--->0 

(1.18) 

:Yl = qlYl +q2)'l +e-atz l  +P2Zt + Yl(t, xok), zl = PlZl +Zl(t,x,~k) (1.19) 

where qi, Pi(i -- 1, 2) and ~ are certain constants. I fqi  < O, p i  < 0, (x > 0, then the equilibrium positiony] = Yi = 
Zl = zi = 0 of the linear part of system (1.19) is uniformly Lyapunov-stable and (simultaneously) exponentially 
asymptotically 0:1, y'l)-stable for any P2. If the non-linear forces II1 and Z1 satisfy conditions of type (1.18), then 
the same stability property will hold for the equilibrium position of the non-linear system (1.19) itself. 

Then, by Theorem 1, the stability property specified for linear system (1.17) also holds for the equilibrium position 
x = x = 0 of non-linear system (1.16). 

Suppose, in particular, that dim(x) = 2 and let system (1.16) have the form 
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2. P A R T I A L  S T A B I L I Z A T I O N  OF THE STEADY M O T I O N S  
OF A R I G I D  BODY 

In applications, stabilization of the steady motions of a rigid body (such as a spacecraft) is frequently 
achieved by means of rotating masses attached to the body: flywheels and/or power gyroscopes. 

In the stabilization process, these masses "take upon themselves" perturbations which occur as a result 
of the body's deviation from a given state [24-26]. 

We will show, however, that if the steady motions of the rigid body are stabilized only partially (that 
is, with respect to part of the variables), which is sufficient in many cases of practical importance, then 
the masses attached to the body may only "transfer" (without "taking upon themselves") perturbations 
to the part of the variables not controlled by the stabilization. 

Suppose we have an asymmetric rigid body, with the axis of rotation of a uniform symmetric flywheel 
attached along one of the principal central axes of inertia of the body. The angular motion of the 
(gyrostat) system about its centre of mass is described by the equations [25] 

(Jr - AI )xl = (J2 - J3)x2x3 - Ul, J2x2 = (J3 - Ji )XlX3 - Alx3(° 

J 3 x 3  = ( J i  - J 2 ) X l X 2  + AIX2(P, AI ( ~  + xl  ) = ul (2.1) 

where Ji are the principal central moments of inertia of the gyrostat, xi are the projections of the angular 
velocity vector of the main body onto the principal central axes of inertia si of the gyrostat, A 1 and q0 
are the axial moment of inertia and angular velocity of the flywheel's own motion and Ul is the controlling 
torque applied to the flywheel. 

Equations (2.1) have the solution 

x t = x 2  =0, x 3=Co=const>0,  ~a=0, u I = 0  (2.2) 

corresponding to permanent rotation ("twist") of the main body of the gyrostat at a constant angular 
velocity co about the s3 axis. In this motion the flywheel, whose axis of rotation is attached along the Sl 
axis, is fixed relative to the main body, while the direction of the vector K of angular momentum of the 
gyrostat coincides with the direction of the s3 axis. 

Introducing new variables yj = xj (j = 1, 2), Y3 = tp, Zl = x3 - co, we set up a system of equations for 
the deviations from solution (2.2) 

( J I  - AI )Yi = ( J 2  - J3)Y2(Zl + CO) - u l ,  J2Y2 = [ ( J3  - J t )Yl  - AlY3](Zl + co) 

(JI - AI )-f3 = (J3 - J2 )Y2(Zl + CO)+ JI AllUj (2.3) 

J3zl = [(JI - J2)Yl + AlY3]Y2 

Let us consider the problem ofpartial stabilization of the motion y = (Yl,Y2, Y3) T = 0, Zl = 0 of system 
(2.3) y-stabilization by means of the control uv In this context, stabilization with respect to Yl, Y2 means 
that one must suppress small precessional and nutational oscillations of the angular momentum vector 
K of the gyrostat about the si axes attached to the body. Additional stabilization with respect to Y3 means 
that in the process of the (Yl, y2)-stabilization, the flywheel only "transfers" the small perturbations to 
the "additional rotation" of the gyrostat about the s3 axis of rotation. 

Proposition. If-Jz ~ J3, solution of the y-stabilization problem for unperturbed motion y = 0, z I = 0 
of system (2.3) yields the control law 

ul =Ky  (2.4) 

where K is some constant 1 x 3 row-vector. 

Proof. Let us consider the linear subsystem describing the behaviour of the y-variables of the 
linear part of system (2.3). If J2 ~ J3, this subsystem is completely controllable [27]. Therefore 
the coefficients of the vector K in (2.4) may be chosen so that the trivial solution y = 0, zl = 0 of the 
non-linear part of system (2.3) will be uniformly Lyapunov-stable and (simultaneously) exponentially 
y-stable. 

The right-hand sides of system (2.3) vanish at y = 0. Therefore, by Theorem 1, the stability property 
specified for the linear part of system (2.3) will also hold for the unperturbed motion y = 0, Zl = 0 of 
the non-linear system (2.3). 
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Remarks. 1. The problem just considered is of interest in spacecraft dynamics, where it is important to 
achieve "twist" of the craft about one of the principal central axes of inertia (as a rule--the greatest one) 
[24, 281 . 

2. In technical terms, implementation of control law (2.4) reduces to the following. As long as the gyrostat is 
performing the given motion (2.2), the flywheel is at rest (control drive switched off). In the event of small 
perturbations, special devices produce a control torque (2.4) and transmit it to the flywheel. As a result, the main 
body of the gyrostat returns in time to its original steady rotation, and the flywheel to its state of rest. 

3. T H E  C O N D I T I O N  OF P O L Y S T A B I L I T Y  W I T H  R E S P E C T  
TO PART OF T H E  V A R I A B L E S  

Retaining the previously introduced notation, let us consider a non-linear system of equations of 
perturbed motion, more general than (1.1) 

3, = A(t)y + B(t)z + Y(t, y, z, w), z = C(t)y + D(t)z + Z(t, y, z, w) 

vi' = W(t ,y ,z ,  w) 

0.1) 

We will assume that in the domain 

t ~ 0, Ilxll ~ h, Ilwll < ~ (3.2) 

where x = (yr, zr)r, the right-hand sides of system (3.1) are continuous and satisfy the conditions of 
the existence and uniqueness theorem. In addition, we will assume that the solutions of system (3.1) 
are w-continuable [3, 29], that is, they are defined for all t I> 0 for which Ilxll ~< h. 

The property we are studying--polystability with respect to part of the variables--may be defined 
rigorously as follows. 

Definition 2. The unperturbed motion y = 0, z = 0, w = 0 of system (3.1) is uniformly (y, z)-stable 
and (simultaneously) exponentially asymptotically y-stable, if, for any e > 0, t o i> 0, numbers ~5(e) > 0 and 
T > 0 exist such that, whenever IIx0[I + Ilw0ll < 5, the following inequalities hold for all t >/to 

IIx(t; to, x0, w0)ll < e, Ily(t; t0, xo, Wo)ll < e exp[-y(t - to)] 

Suppose the following conditions hold in domain (3.2) 

Y(t, O, O, O) --- Y(t, O, z, w) -= 0 

Z(t, O, O, O) = Z(t, O, z, w) - O, W(t, O, O, O) -= 0 

Ily(t'Y'Z'w)U+llz(t'Y'Z'W)ll ,o as Ilyll+llzll- o 
Ilyll 

(3.3) 

Theorem 2. Suppose the trivial solution of linear system (1.3) is uniformly stable in Lyapunov's sense 
and (simultaneously) exponentially asymptotically y-stable. Then, if conditions (3.3) are satisfied, the 
unperturbed motion y = 0, z = 0, w = 0 of non-linear system (3.1) is uniformly (y, z)-stable and 
(simultaneously) exponentially asymptotically y-stable. 

The proof  follows the same lines as that of Theorem 1. 

Discussion of Theorem 2. 1. Theorem 2 is an extension of the result of [15], where B -= 0 and the 
matrices A, C and D are constant. 

2. The last condition of (3.3) is easily verified if it is known in advance that the solutions of system 
(3.1) are uniformly w-bounded beginning in some sufficiently small neighbourhood of the unperturbed 
motion. 

3. The conditions of Theorem 2 determine conditions for polystability with respect to part of the 
variables of the unperturbed motion of system (3.1): conditions of (y, z)-polystability. 

4. A M E T H O D  OF R E D U C I N G  T H E  A D M I S S I B L E  D O M A I N  OF 
V A R I A T I O N  OF " U N C O N T R O L L E D "  V A R I A B L E S  TO S T U D Y  

P A R T I A L  S T A B I L I T Y  P R O B L E M S  

Partial stability problems are frequently solved using the method of Lyapunov functions in a suitable 



Problems of stability with respect to part of the variables 701 

modification. One such modification [18] reduces to adjusting the structure of the domain in which the 
Lyapunov functions are constructed. To elucidate: the domain usually considered in studying y-stability 
of the position x = (yr, zr)r  = 0 of system (0.1) 

t/> 0, Ilyll ~< h, II zll < oo (4.1) 

where h is a sufficiently small positive number, is contracted, being replaced by a domain 

t >t 0, Ilytl + IIW(t, x)ll ~< h, Ilzll < ¢,, (4.2) 

where W(t, x) is some vector function, which depends on t and the phase variables of system (0.1). In 
this case, naturally, the new condition Ilyll + IIW(t, x)ll ~< h must be verified while the problem is being 
solved. 

The main point in studying the problem of y-stability in domain (4.2) is that the y-stable position 
x = (yr, z~r) ~r = 0 of system (0.1) is always actually stable not only with respect to y but also with respect 
to certain functions W/= W/(t, x). However, it is not always clear in advance just what Wi-functions are 
involved. In such a situation, suitable W/-functions are naturally treated as an additional vector-valued 
Lyapunov W-function for the most rational substitute (4.2) for domain (4.1). When that is done it is 
not necessary to analyse the derivative of the W-function along trajectories of system (0.1), which is an 
added argument in favour of this approach. 

Such an approach not only facilitates the construction of Lyapunov functions with appropriate proper- 
ties, but also enables one to prove y-stability using functions which, even when dim(y) = dim(z) = 1, 
need not be of fixed sign [18] either with respect to y (in Rumyantsev's sense [2, 3]) or in Lyapunov's 
sense [2]. 

We will apply the above method of contracting the domain of variation of the "uncontrollable" 
variables to modify the conditions for asymptotic stability with respect to part of the variables [3]. 

We introduce the assumptions usually adopted in the theory of stability with respect to part of the 
variables [3, 29]: system (0.1) is continuous in domain (4.1), and its solution is unique and z-continuable. 
We will also consider two classes of functions: 1) functions ai(r): R 1 ----> R 1 (/ = 1, 2, 3) which are 
continuous, monotone increasing for r ~ [0, h], and such that ai(O) RnOi (2) a scalar function V(t, x): 
R n+l ---> R 1, n = dim(x), V(t, O) =- 0 and vector functions W(t, x): ---> R q, W(t, 0) -= 0, U(t, x): 
Rn+ 1 ___> R s, U(t, 0) --- 0; q, s > 0 are certain numbers whose designation depends on the specific problem 
being solved. 

Theorem 3. Suppose a scalar f unction Vand two vector functions U and W exist such that the following 
conditions hold in domain (4.2) 

1..V(t, x) I> al(llYll + IIW(t, x)ll); 
2. V(t, x) ~< --az(llU(t, x)ll); 
3. IIU(t, x)ll/> a3(llyll); 
4. a number M(to, x0) > 0 exists such that, for each of the functions Ui, either ~ ~< M or t)/i> -M. 
Then the unperturbed motion x = 0 of system (0.1) is asymptotically y-stable. 

Proof. Conditions 1 and 2 imply that the unperturbed motion x = 0 of system (0.1) is y-stable [2, 18]. 
In that case, for any to t> 0, A(t0), 0 < A < 8 exists, such that 

Ily(t; t0, x0)ll + IIW(t; t0, x0)ll < h, t ~> t0 for IIx01l < A 

We will show that if IIx011 < A, then also 

limllU(t, x(t; t 0, x0))ll ---> 0, t --> oo (4.3) 

Using the scheme of [3, 19-21], suppose the contrary: a number I > 0 and a vector x. exist such that 
IIx*ll < A, and a sequence tk ---> oo, tk - tk-1 /> O~ > 0 (k = 1, 2, 3 . . . .  ) for which 

IIU(t k, x(tk; t0, x.))il t> !, k = 1, 2, 3 .... (4.4) 

If Condition 4 is satisfied, one can find a number 13 (0 < 13 < ct) such that, for IIx*ll < A and all 
k = l ,  2 . . . .  

½l <. IIu t,x t;to,X.)ll ~< h,  t ~ T k = [t k - f l ,  tk + f l ]  ( 4 . 5 )  
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Then  it follows f rom (4.5) that  for Ilx*ll 
x(t; to, x.) 

< A the following inequalities hold along solutions x = 

Therefore ,  

V(t,x) ~< -a2(llUII) ~< - a 2 ( l ~ l ) ,  t e T~ 

0 <<- V( t ,  +~ ,x ( t  k +lS; t0 ,x0))~ < V(t0,x0)+ 

+ Y~ ~ V(z ,x (~; to ,X , ) )d~<~ V ( t o , X o ) -  2kfla 2 l (4.6) 
i=1 t i -  fl 

which is impossible for  sufficiently large k. 
Thus,  our  assumpt ion (4.4) cannot  be true. Consequently,  lima3(lly(t; to, x0)ll) = 0 as t ~ oo, provided 

that  IIx011 < A. The  theo rem is proved.  

Discussion o f  Theorem 3.1. I fW  = 0 Theorem 3 is a stronger version of Theorem 22.2 of [3], which extends the 
corresponding result of [20] to the. case of partial asymptotic stability. 

2. I fW ¢ 0, then not only Vand V but also IIUII need not be sign-definite, either with respect to y (in Rumyantsev's 
sense [2, 3]) or in Lyapunov's sense [1]. In addition, Condition 4 may be verified in domain (4.2) but not in domain 
(4.1), and this extends the possibilities for using the theorem. 

3. If U = y, Condition 4 reduces to the requirement that each component of the vector function Y, defining the 
right-hand side of the first group of equations in system (0.1), should be bounded above or below. Therefore, when 
U = y, W = 0, Theorem 3 reduces to a theorem of [3, 30] which extends the classical result of Marachkov [21] to 
the case of partial asymptotic stability. 

4. The approach proposed here of using an additional Lyapunov vector function has also been used [31] to 
strengthen a number of theorems [3, 32] on asymptotic stability with respect to part of the variables for an 
autonomous system (0.1) (of the type of the Barbashin-Krasovskii theorem [33]). 

Example 3. Let system (0.1) be 

Yl = -YJ + 2y2 + e'Yl (zlz2)2 + YlZt z~z~, Y2 = -2yj - )'2 - e'Y2 (z2 z3)z (4.7) 

zi = 2z3 - 2e'y~zl, z~ = e'y2z2, z~ =-2zl  

Let us consider the problem of asymptotic (Yl, y/)-stability of the unperturbed motion Yl = Y2 = zi = 0 (i = 1, 
2, 3) of system (4.7). To do this, we introduce Lyapunov functions 

V=yl  2+y~+(z lz2)  2+(z2z3) 2, W=(WI,W2), WI=ZlZ2, W2=z2z 3 

U=(UI,U2), Ul=Yl 2, U2=Y ~ 

Positive constants l, Mx and M2 exist such that the following relations hold in domain (4.2) 

V=yl  2 +y2 +WI 2 + W22 I> al(llylt + Ii W II) 

I~' = -2[(yl 2 + y~) -  yl 2 W I W 2 ] ~< -l(y~ + y~) ~< - a  2 (11U II), II U I1~ > a 3 (lly II) 

-M ,<~LI ,=2y , { - y I+2Y2+~ 'y ,  WI2+y, WIW2}, ~I2=2Y2{-2Yl-Y2-Ety2W22}<~M2 

Consequently, the functions V, W and U satisfy all the conditions of Theorem 3. Hence the equilibrium position 
Yl = Y2 = zi = 0 (i = 1, 2, 3) of system (4.7) is asymptotically (Yl, ye)-stable. 

Note that the relation I)" <~ -l(y 2 + y~) is not guaranteed in domain (4.1), that is, the function l~" need not be 
y-sign-definite in Rumyantsev's sense [2, 3]. 

I wish to thank V. V. Rumyantsev  for his interest. 
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